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Abstract

A procedure has been developed for global energy minimization of surface loops of proteins in the pres-
ence of a fixed core. The ECEPP potential function has been modified to allow more accurate repre-
sentations of hydrogen bond interactions and intrinsic torsional energies. A computationally efficient
representation of hydration free energy has been introduced. A local minimization procedure has been
developed that uses a cutoff distance, minimization with respect to subsets of degrees of freedom, an-
alytical second derivatives, and distance constraints between rigid segments to achieve efficiency in
applications to surface loops. Efficient procedures have been developed for deforming segments of the
initial backbone structure and for removing overlaps. Global energy minimization of a surface loop is
accomplished by generating a sequence (or a trajectory) of local minima, the component steps of which
are generated by searching collections of local minima obtained by deforming seven-residue segments
of the surface loop. The search at each component step consists of the following calculations: 1) A
large collection of backbone structures is generated by deforming a seven-residue segment of the initial
backbone structure. 2) A collection of low-energy backbone structures is generated by applying local
energy minimization to the resulting collection of backbone structures (interactions involving side chains
that will be searched in this component step are not included in the energy). 3) One low-energy side
chain structure is generated for each of the resulting low-energy backbone structures. 4) A collection
of low-energy local minima is generated by applying local energy minimization to the resulting collec-
tion of structures. 5) The local minimum with the lowest energy is retained as the next point of the
trajectory. Applications of our global search procedure to surface segments of bovine pancreatic trypsin
inhibitor (BPTI) and bovine trypsin suggest that component-step searches are reasonably complete. The
computational efficiency of component-step searches is such that trajectories consisting of about ten
component steps are feasible using an FPS-5200 array processor. Our procedure for global energy mini-
mization of surface loops is being used to identify and correct problems with the potential function and to
calculate protein structure using a combination of sequence homology and global energy minimization.

1 INTRODUCTION

This paper is the first in a series devoted to protein structure prediction using a combination of se-
quence homology and global energy minimization. In this paper, we describe a computer program for
global energy minimization of surface loops. The program should enable systematic improvement of the
accuracy of the potential function and applications of global energy minimization to structure prediction
that would otherwise have been impossible. In paper II of this series, (1) we will describe an attempt to
improve the accuracy of the potential function. In paper III of this series, (2) we will describe an attempt
to calculate the structure of a protein for which the crystal structure has been determined using both the
crystal structure of a homologous protein and global energy minimization.
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The basic concepts of protein structure prediction using a combination of sequence homology and
global energy minimization are a) the structure of the core can be determined using the crystal structure
of a homologous protein, and b) the structure of the surface can (in principle) be determined using
global energy minimization. In practice, obtaining structural information from global energy minimization
is difficult both because the potential energy function must be accurate and because large collections
of local minima must be examined. (3) These difficulties have limited the success of several recently
implemented procedures for global energy minimization of surface loops. (4–8)

The primary goal of this project is to develop methods for calculating the structure of a protein using
both the crystal structure of a homologous protein and global energy minimization. The most difficult
component of this goal is to develop methods for obtaining a significant amount of structural information
from an empirically parameterized function representing energy. There are probably alternative proce-
dures for obtaining reliable structural information about surface loops. We have not attempted to use
experimental information from sources other than homology, and we have not attempted to push the
concept of homology to give structural information about surface loops. (9,10)

Calculation of protein structure using the crystal structure of a homologous protein and global en-
ergy minimization is closely related to calculation of protein structure using NMR distance constraints
and global energy minimization. Knowing the crystal structure of a homologous protein is equivalent to
knowing distance constraints for some subset of atom pairs. In both cases, methods for imposing the
experimentally determined distance constraints are considerably less difficult than methods for obtain-
ing structural information from an empirically parameterized function representing energy. Therefore,
methods developed for the former application are useful for the latter.

The description of METHODS is composed of several sections. The primary result of our research is
the procedure for global energy minimization of surface loops, which is described in section 2.5. To test
the efficiency of this procedure, global energy minimization has been applied to surface segments of
protein crystal structures, as described in section 2.6. A precise measure of the efficiency of a proce-
dure for global energy minimization would be the amount of computer time that is required to obtain
the global minimum of a specified potential function. However, since the completeness of our global
searches cannot be established conclusively, we are forced to use a less precise measure of efficiency,
the amount of computer time that is required to accomplish global searches for which available evidence
suggests completeness. The functions that were used to represent the vacuum potential energy and
the hydration free energy are described in sections 2.1 and 2.2, respectively. Our procedure for local
minimization with respect to subsets of degrees of freedom, which is described in section 2.4, is the
primary component of our procedure for global energy minimization of surface loops. The hardware on
which our computer program has been developed is described in section 2.3. In section 2.7, notation is
introduced that allows concise description of backbone structure. This notation is used to describe the
low-energy structures that result from applications of global energy minimization to surface segments of
protein crystal structures.

Our evaluation of efficiency is independent of the accuracy of the potential function. The accuracy of
the potential function is relevant to an evaluation of efficiency only if the potential function is sufficiently
accurate that the global energy minimum can be predicted with confidence to be the experimentally de-
termined crystal structure. Such accuracy would enable the global energy minima of surface loops to be
determined experimentally, which would enable the completeness of global searches to be established
with minimal effort. Since the global minimum of the potential function that was used to evaluate effi-
ciency often differs significantly from the crystal structure, none of our conclusions concerning efficiency
is based on the assumption of an accurate potential function. We do not attempt to examine the accuracy
of the potential function that was used to evaluate efficiency. The potential function is evolving, and the
accuracy of the current potential function is not sufficient to allow reliable prediction of structure.

For reasons that are discussed in section 2.4, procedures for generating localized deformations of
large molecules and procedures for efficient local minimization of these deformed structures with respect
to subsets of degrees of freedom are the primary components of what appear to be the most promising
procedures for global minimization of large molecules. Our procedure for global energy minimization
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of surface loops is a procedure of this type. In Appendix A, we describe an algorithm for generating
backbone deformations. This algorithm is computationally more efficient and can be implemented with
much less effort than previously described algorithms for generating backbone deformations. (11) In Ap-
pendix B, we describe a simple yet extremely effective algorithm for removing overlaps from starting
conformations. This algorithm significantly reduces the amount of computation that is needed for local
minimization with respect to subsets of degrees of freedom.

Our computer program was originally developed to allow global energy minimization of the surface
loops of human thrombin. However, our attempt to predict the structure of thrombin is not yet complete.

2 METHODS

2.1 Representation of Vacuum Potential Energy

The protein is modeled using classical mechanics. All hydrogen atoms are represented explicitly as
classical particles. The values of bond lengths and bond angles are held fixed. The potential energy
function is a modification of the ECEPP potential energy function. (12,13) Modifications include an altered
representation of hydrogen bond interactions, an altered representation of the intrinsic torsional energy,
and an altered proline geometry. (14)

Fixing the values of bond lengths and bond angles decreases the number of degrees of freedom by
a factor of about eight without significantly increasing the number of local minima. This decrease in the
number of degrees of freedom allows more efficient energy minimization procedures to be applied.

The computationally intensive part of the ECEPP potential function is the sum of pairwise interaction
energies which, when expressed in units of kcal/mol, has the form
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where E is the set of atom pairs for which interaction energies are calculated; r(a,b) is the distance of
atom pair (a, b); e= 3 and 5 for non-hydrogen bonding and hydrogen bonding atom pairs, respectively;
n=0.5 and 1.0 for non-hydrogen bonding, 1–4 atom pairs and for all other atom pairs, respectively; Ta is
the atom type of atom a; ε(Ta,Tb) and ρ(Ta,Tb) are parameters that control the depth and the position of
the minimum, respectively, for the 12-2e interaction between a pair of atoms having atom types Ta and
Tb; qa is the partial charge of atom a; and D is the dielectric constant.

Some of the modifications to the ECEPP potential function were suggested by analysis of the low-
energy structures obtained by applying our global search procedure to surface loops of thrombin using
the unmodified ECEPP potential function. These low-energy structures were often inconsistent with struc-
tural properties [such as compactness, linearity of hydrogen bonds, and the distribution of (φ, ψ) values
for each amino acid] observed in crystal structures of globular proteins. (15) Largely because of the un-
known accuracy of the hydration free energy contribution to the total potential function, the exact causes
of the observed problems have been difficult to identify. However, careful analysis of the potential func-
tion has identified possible causes.

The altered representation of hydrogen bond interactions results in a greater energetic preference
for linear geometry. The altered representation of the intrinsic torsional energy, which includes a com-
ponent that depends on the value of (φ, ψ), results in a predicted distribution of (φ, ψ) values that is
more consistent with the distribution that is observed in crystal structures of globular proteins. For a
residue preceding proline, the altered geometry of proline results in an energy difference between the
α-helical and extended regions of the (φ, ψ) map that is more consistent with the corresponding distribu-
tion of (φ, ψ) values observed in crystal structures of globular proteins. The exact form of the potential
function and the parameters that were used for the calculations reported in this paper are presented
elsewhere. (14)
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2.2 Representation of Hydration Free Energy

Conceptually, the simplest procedures for calculating the difference in hydration free energy between
two conformations of a protein are those that represent water molecules explicitly as collections of clas-
sical particles. (16) For a system consisting of water molecules in an external field created by a fixed
conformation of the protein, these procedures calculate the ratio of the partition function for this system
evaluated for two different conformations of the protein, a quantity that is directly related to the differ-
ence in hydration free energy between the two conformations. We have not attempted to represent water
molecules explicitly because of the computational time required by these procedures. Global searches
of surface loops often require tens of thousands of minimizations, and it is desirable that hydration free
energy be included at each step of each minimization. Therefore, we have chosen to represent hydration
free energy as an empirically parameterized function (defined on the space of protein conformations)
that can be evaluated without the need for integration with respect to solvent degrees of freedom.

The function that we use to represent hydration free energy is less complex computationally than
functions that determine areas of exposed surfaces (17) or volumes of unoccupied hydration shells. (18,19)

The computer time that is required to calculate the function and derivatives of our hydration free energy
is about the same as the computer time that is required to calculate the function and derivatives of our
vacuum potential energy. The exact form of the potential function and the parameters that were used for
the calculations reported in this paper are presented elsewhere. (14) In paper II of this series, (1) the pa-
rameters of the potential function (both the vacuum potential energy and the hydration free energy) will
be adjusted to optimize the fit between predicted and observed structures for surface loops of proteins
having known crystal structures.

2.3 Hardware

Our computer program for global energy minimization of surface loops has been developed on a rela-
tively inexpensive computer system consisting of a Prime 550 minicomputer, an attached FPS-5200 array
processor, and an attached Evans and Sutherland PS330 graphics system. All of the calculations com-
pleted thus far have been performed on this system. The FPS-5200 has a theoretical peak performance
of 12 megaflops. The subprograms that evaluate function and derivatives (first and second) for the
vacuum potential energy, the hydration free energy, and the sum of harmonic distance constraints, the
subprograms for minimization, and the subprograms for removing overlaps have all been programmed
in assembly language to run efficiently on the FPS-5200.

2.4 Local Minimization of Large Molecules

Our local minimization procedure uses the following four techniques to increase efficiency in applica-
tions to large molecules: a cutoff distance, minimization with respect to subsets of degrees of freedom,
analytical second derivatives, and distance constraints between rigid segments. The interaction energies
of atom pairs separated by a distance greater than some cutoff distance are not included in the function
that is minimized. The cutoff distance reduces the number of interactions that are calculated at each
step of the minimization. The energy is minimized with respect to subsets of degrees of freedom. For
a given subset, the interaction energies of atom pairs whose distance is independent of the degrees of
freedom contained in the subset are not included in the function that is minimized. Minimization with
respect to subsets of degrees of freedom further reduces the number of interactions that are calculated
at each step of the minimization. The memory size of the FPS-5200 (1/2 megawords) limits the num-
ber of degrees of freedom within a subset to 250. This is the only restriction on subsets used for local
minimization. The program calculates analytical first and second derivatives with respect to the subset
of degrees of freedom that is being used. Minimization steps are calculated using Newton’s method. A
Newton minimization procedure gives better convergence than a quasi-Newton procedure and requires
fewer steps than a conjugate gradient procedure. The program provides the option of including in the
total energy a sum of harmonic constraints on the distances of atom pairs. These distance constraints
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are often used to fix the relative position and orientation of a pair of rigid segments (segments containing
no variable backbone dihedral angles). When a pair of rigid segments is fixed by distance constraints,
interactions between the rigid segments are not included in the function that is minimized. Distance con-
straints between rigid segments further reduce the number of interactions that are calculated at each
step of the minimization. These techniques allow us to work with proteins of arbitrary size.

The following procedure is used for local minimization of a protein with respect to all degrees of
freedom. A collection of subsets is chosen such that the union of the subsets contains all degrees of
freedom and such that the subsets are highly overlapped. This collection is then cycled through several
times, partially minimizing with respect to the degrees of freedom within a subset before moving to the
next. This procedure is most efficient when the subsets contained in the collection control the motions of
spatially localized regions of the protein.

For large molecules, an efficient procedure for local minimization with respect to all degrees of free-
dom is not very useful for global minimization. For small molecules, the most successful attempts at
global energy minimization have been buildup methods and methods that generate a sequence (or a
trajectory) of local minima. (3) A procedure for local minimization with respect to all degrees of freedom
is the primary component of both approaches. However, local minimization with respect to all degrees
of freedom requires computer time that is at best proportional to the square of the size of the molecule.
Therefore, the number of local minima that can be examined by these methods decreases rapidly as the
size of the molecule increases.

The term local minimum will be used to refer both to the result of a local minimization with respect
to all degrees of freedom and to the result of a local minimization with respect to a subset of degrees
of freedom. However, in all cases, the subset of degrees of freedom with respect to which the energy
was minimized will be clear from the context. Local minima that are obtained when energy is minimized
with respect to a subset of degrees of freedom are not local minima when energy is minimized with
respect to all degrees of freedom. However, when a collection of local minima is obtained by minimizing
with respect to a subset that restricts motion to a spatially localized region of the molecule, further
minimization of the collection with respect to all degrees of freedom would be expected to produce only
small changes both in the values of dihedral angles and in energy differences between conformations.

For large molecules, an efficient procedure for local minimization with respect to subsets of degrees
of freedom provides a mechanism for efficient examination of the collection of local minima that can be
obtained by deforming a spatially localized region of some initial structure. When rigid segments are
fixed, local minimization with respect to subsets of degrees of freedom requires computer time that is
approximately independent of the size of the molecule. For more general cases in which rigid segments
are not fixed, the required computer time is approximately proportional to the size of the molecule.
Therefore, methods for global minimization of large molecules that are based on local minimization with
respect to subsets of degrees of freedom allow examination of a much larger collection of local minima
than methods based on local minimization with respect to all degrees of freedom.

Our procedure for local minimization with respect to subsets of degrees of freedom is the primary
component of our procedure for global energy minimization of surface loops. The subset of degrees
of freedom that is currently being used for global energy minimization of surface loops consists of all
backbone degrees of freedom (including ω) and all side chain degrees of freedom for each residue of the
surface loop and of all side chain degrees of freedom for each side chain that could possibly contact the
surface loop (for some conformation of the surface loop and some conformation of the side chain). Our
local minimization procedure allows us to minimize the energy of a large molecule with respect to the
subset associated with a surface loop using only about twice as much computer time as that required
to minimize the energy of the surface loop in isolation. The rigid segments of the protein are held fixed
relative to each other by harmonic constraints (with force constants of 103 kcal/mol-Å2) on the distances
of approximately 100 atom pairs, and interactions between these rigid segments are not calculated.
The function that is minimized includes only interactions of the surface loop with itself and interactions
between the surface loop and the rest of the protein.
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2.5 Global Energy Minimization of Surface Loops

Global energy minimization with respect to the subset of degrees of freedom that is associated with
a surface loop (which is defined in the previous section) is accomplished by generating a sequence (or a
trajectory) of local minima such that each point of the trajectory has lower energy than the previous point.
The method that we use to generate a trajectory of local minima for global minimization is analogous to
the method that is commonly used to generate a trajectory of conformations for local minimization. In
local minimization, a step of the trajectory is generated by examining all of the conformations that are
contained within a multidimensional sphere that is centered about the current point of the trajectory
and then retaining the conformation with lowest energy as the next point of the trajectory. In global
minimization, a step of the trajectory is generated by examining a collection of local minima that surround
the current point of the trajectory and then retaining the local minimum with lowest energy as the next
point of the trajectory.

The following terms are introduced to simplify the description of our procedure for global energy
minimization. A trajectory of local minima that is generated to accomplish global energy minimization
with respect to the subset of degrees of freedom that is associated with a surface loop will often be
referred to as a surface-loop trajectory. This will enable us to distinguish in a concise way a surface-loop
trajectory from a trajectory of local minima that is generated to accomplish global energy minimization
with respect to some other type of subset of degrees of freedom. The steps of a surface-loop trajectory
will often be referred to as component steps. This will enable us to distinguish in a concise way the steps
of a surface-loop trajectory from the steps of a local minimization or the steps of some other type of
calculation. At each component step, the current point of the trajectory will be referred to as the initial
structure. This will enable us to simplify the description of a single component step. Minimization with
respect to the side chain degrees of freedom that are contained in the subset of degrees of freedom that
is associated with a surface loop will be referred to as minimization with respect to side chain degrees
of freedom (as if no other side chain degrees of freedom existed). This will enable us to simplify the
description of part C of the component step.

The following procedure is used to generate a collection of low-energy local minima that surround the
current point of a surface-loop trajectory:

A) A large collection of backbone structures is generated by deforming a seven-residue segment of the
initial backbone structure.

B) A collection of low-energy backbone structures is generated by applying local energy minimization
to the backbone structures obtained in part A (interactions involving the side chains that will be
searched in part C are not included in the energy).

C) One low-energy side chain structure is generated for each of the low-energy backbone structures
obtained in part B.

D) A collection of low-energy local minima is generated by applying local energy minimization to the
structures obtained in part C.

In part A of this procedure, a large collection of backbone structures is generated by deforming a
seven-residue segment of the initial backbone structure. A seven-residue segment of the initial back-
bone structure is deformed by obtaining alternative values for six consecutive (ψ, φ) pairs and the six
intervening ω dihedral angles such that the ω values are set at 180◦ and such that the relative position
and orientation of the nondeformed segments of the initial backbone structure are preserved. We group
backbone dihedral angles into (ψ, φ) pairs, where ψ and φ refer to dihedral angles of residues i−1 and i,
respectively, because this choice simplifies the description of our procedure for generating deformations
of the backbone.

Three (ψ, φ) pairs are assigned values from discrete collections. Values for the remaining three (ψ, φ)

pairs are calculated analytically. A more complete description of our procedure for deforming a seven-
residue segment of the initial backbone structure is presented in Appendix A.
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Figure 1: Acceptable (φ, ψ) values (in degrees) for alanine. Backbone deformations generated in part A
of the component step of the trajectory are discarded without attempting to relieve overlaps if an
alanine residue has a (φ, ψ) value in the shaded region. An acceptable set of (φ, ψ) values has been
assigned to each of the 20 amino acids.

The deformations generated by our procedure are not exact in the sense that the relative position
and orientation of the nondeformed segments of the structure are not exactly preserved. Our procedure
simplifies the system of equations that determines exact deformations by replacing the exact backbone
geometry with an approximate geometry. Values for the six (ψ, φ) pairs of the deformable segment that
satisfy this simplified system of equations are not exact deformations. When the deformed segment
contains a proline residue, the generated deformations differ from exact deformations in another way. A
deformation is not accepted when the φ value of a proline residue is not within 60◦ of−75◦. Otherwise, the
value of φ for proline is moved to −75◦ (the ECEPP value of φ for proline), and the value of the preceding
ψ is moved an equal amount in the opposite direction. The deformations become exact during part B of
this procedure in which a sum of harmonic distance constraints between rigid segments of the protein is
included in the energy.

A deformation is also not accepted when the (φ, ψ) value of a residue in the deformed segment lies
deeply within a high energy region because minimization starting from such a deformation requires a
large structural change and, therefore, often results in a low-energy backbone structure that is more
easily reached by minimization starting from another deformation. For example, deformations for which
the (φ, ψ) value of an alanine residue lies in the shaded region of Figure 1 are eliminated.
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To reduce the probability of redundant computation in part B, some of the calculated deformations are
eliminated. Clusters of similar backbone deformations are identified, and one representative deformation
from each cluster is retained. A description of our clustering procedure is presented elsewhere. (14) The
resulting collection typically contains between 200 and 2,000 backbone structures.

In part B of this procedure, a collection of low-energy backbone structures is generated by apply-
ing local energy minimization to the backbone structures obtained in part A. Throughout this part of the
procedure, interactions involving the side chains that will be searched in part C are not included in the en-
ergy. For each backbone structure obtained in part A, the 12-2e potential plus a sum of harmonic distance
constraints between rigid segments of the protein is minimized with respect to all backbone degrees of
freedom of the surface loop. An overlap is defined to be a 12-2e interaction with energy greater than
3.5 kcal/mol. A structure is retained only if all overlaps have been removed. The resulting collection of
overlap-free backbone structures is clustered, and one structure from each cluster is retained. For each
of the remaining overlap-free backbone structures, the total energy (the sum of the vacuum potential
energy, the hydration free energy, and a collection of harmonic distance constraints between rigid seg-
ments of the protein) is minimized with respect to all backbone degrees of freedom of the surface loop.
The resulting collection of low-energy backbone structures is clustered, and the lowest-energy structure
from each cluster is retained. Structures for which the energy is not within 30 kcal/mol of the lowest
energy obtained are eliminated. If the resulting collection contains greater than n structures, where n is
either 40 or 80, then the collection is reduced to n structures by eliminating the structures that have the
highest energies.

The total energy of a structure can be minimized with much less computer time after the overlaps
have been relieved than would have been required had the overlaps not been previously relieved. Even
though the movement required to relieve overlaps is usually much greater than the movement required
to minimize the total energy of the resulting overlap-free structure, the computer time required to re-
lieve overlaps is usually much less than the computer time required to minimize the total energy of the
resulting overlap-free structure. Our procedure for relieving overlaps is simple yet extremely efficient. A
description of this procedure is presented in Appendix B.

In part C of this procedure, one low-energy side chain structure is generated, by global energy mini-
mization with respect to side chain degrees of freedom, for each of the low-energy backbone structures
obtained in part B. For each low-energy backbone structure, global energy minimization with respect to
side chain degrees of freedom is accomplished by generating a trajectory of low-energy side chain struc-
tures (which will be referred to as a side chain trajectory to distinguish it from the surface-loop trajectory)
such that each point of the trajectory has lower energy than the previous point. The initial point of the
side chain trajectory is the side chain conformation of the current point of the surface-loop trajectory (the
side chain conformation of the initial structure whose backbone was deformed in part A). A trajectory of
low-energy side chain conformations is generated by 1) selecting a collection of subsets of degrees
of freedom such that the union of the subsets in the collection is the subset of side chain degrees of
freedom that is being searched, and 2) cycling through this collection once, globally minimizing with
respect to the degrees of freedom within a subset before moving to the next subset.

For each low-energy backbone structure, the following procedure is used to select a collection of
subsets of side chain degrees of freedom. We first examine all pairs of the side chains that are being
searched. If contact is possible between a pair of side chains (for some conformation of the two side
chains), then the subset consisting of all the degrees of freedom contained in that pair of side chains is
included in the collection. We then examine individually all of the side chains that are being searched.
If a side chain is isolated in the sense that no contact is possible with any other side chain that is being
searched, then the subset consisting of all the degrees of freedom contained in that side chain is in-
cluded in the collection. Since contact between a pair of side chains may be possible for some backbone
structures but not others, the collection of subsets that is selected by this procedure is often different for
different low-energy backbone structures.

For each low-energy backbone structure, global energy minimization with respect to the subsets that
are contained in the associated collection is accomplished by a buildup procedure. (20) For each side chain
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dihedral angle of each amino acid, between one and six values have been selected as representative of
the observed distribution of values for that degree of freedom. At each step of the buildup, a) one, two,
or three degrees of freedom are selected from the subset with respect to which energy is being (globally)
minimized, b) all combinations of representative values for these degrees of freedom are combined with
the low-energy conformations that resulted from the previous step of the buildup to create starting points
for energy minimization, c) for each starting conformation, first the 12-2e potential and then the total
energy is minimized with respect to the current subset of degrees of freedom, and d) conformations for
which the energy is within 16 kcal/mol of the lowest energy are retained. Interactions involving atoms
within the pair of side chains (or the individual side chain) that is being searched whose position depends
on degrees of freedom that have not yet been assigned representative values are not included in the
energy. Otherwise, all of the interactions of the pair of side chains (or the individual side chain) with itself
and with the rest of the protein are included.

In part D of this procedure, a collection of low-energy local minima is generated by applying local
energy minimization to the structures obtained in part C. For each structure obtained in part C, the total
energy is minimized with respect to the subset of degrees of freedom that is associated with the surface
loop. To assure that each point of the trajectory will have lower energy than the previous point, local
energy minimization is applied to the structure that corresponds to the current point of the trajectory,
and the resulting local minimum is added to the previously obtained collection of local minima. A cutoff
distance of 18 Å was used in all minimizations previous to this point. At this point, the 10 lowest-energy
local minima are used as starting points for minimization of the total energy, with respect to the subset
of degrees of freedom that is associated with the surface loop, using no cutoff distance.

The current point of the trajectory was the result of minimization with no cutoff distance in the previ-
ous component step. Since the current point of the trajectory is reinserted at the start of part D, it must
be reminimized with a cutoff distance of 18Å to allow comparison of its energy with the energies of other
structures.

In Figure 2, the algorithm that is used to generate a surface-loop trajectory is summarized by a flow
diagram. In Figure 3, part C of the component step of a surface-loop trajectory (the algorithm that is used
to generate a side chain trajectory) is summarized by a more detailed flow diagram.

In most cases, the subset of degrees of freedom that is associated with a surface loop includes both
backbone and side chain degrees of freedom that are not directly searched in the current step of the
surface-loop trajectory in the sense that these degrees of freedom are never assigned alternative values
to create starting points for energy minimization. These degrees of freedom may be searched in succeed-
ing steps of the trajectory, or they may serve only to provide additional flexibility during minimization.

The input to our program for global energy minimization of surface loops is quite simple. User in-
teraction with the program occurs only between component steps of the surface-loop trajectory. This
interaction consists of observing the results of the previous step, modifying the input such that the cur-
rent step will differ from the previous step, and restarting the program. The input for each component
step consists of the protein sequence; initial dihedral angles for the protein; and sets of residues for which
backbone motion will be allowed, for which side chain motion will be allowed, for which backbone degrees
of freedom will be searched, and for which side chain degrees of freedom will searched. The global min-
imization program is currently set up to handle backbone motion in only one segment, but only minor
modifications would be needed to allow backbone motion in two or more segments simultaneously.

2.6 Test Calculations on Protein Crystal Structures

To test the efficiency of our global search procedure, calculations have been carried out on proteins
for which crystal structures have been determined. The following nine high-resolution protein crys-
tal structures have been selected from the Brookhaven protein data bank: (21) 1PPT (avian pancreatic
polypeptide), 1CRN (crambin), 5PTI (trypsin inhibitor), 2EBX (erabutoxin B), 2RHE (immunoglobulin B-J
fragment), 5RSA (ribonuclease A), 1LZ1 (lysozyme), 1PPD (papain D), and 2PTN (trypsin). To allow global
energy minimization using dihedral angle degrees of freedom, regularized structures (having ECEPP val-
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Figure 2: Flow diagram of the algorithm used to generate a surface-loop trajectory. A component step of
the trajectory corresponds to one complete cycle of the diagram. At each component step, the algorithm
generates a collection of low-energy local minima then retains the local minimum with lowest energy as
the next point of the trajectory. In part A, the initial backbone structure is the backbone structure of the
current point of the surface-loop trajectory. In part C, a side chain trajectory is generated separately
for each of the low-energy backbone structures that was obtained in part B. The initial point of the side
chain trajectory is the side chain conformation of the current point of the surface-loop trajectory.
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Figure 3: Flow diagram of the algorithm used to generate a side chain trajectory. This algorithm
is applied separately to each of the low-energy backbone structures that result from part B of the
component step of a surface-loop trajectory. Values of backbone degrees of freedom are held fixed
throughout the algorithm. The initial point of the side chain trajectory is the side chain conformation
of the current point of the surface-loop trajectory. A step of the side chain trajectory corresponds to
one complete cycle of the diagram. At each step of the side chain trajectory, the algorithm generates
a collection of low-energy local minima, and then retains the local minimum with lowest energy as the
next point of the trajectory. The points of a side chain trajectory are local minima in the sense that
each point results from local energy minimization with respect to a subset of degrees of freedom. For
a surface-loop trajectory, the subset with respect to which energy is a minimum is the same for each
point, whereas for a side chain trajectory, the subset with respect to which energy is a minimum is
different for each point.
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ues of bond lengths and bond angles) have been fit to the coordinates of these crystal structures. Our
fitting procedure consists of local minimization (with respect to all degrees of freedom) of the vacuum
potential energy plus a sum of harmonic constraints on the distances of about 4000 atom pairs. Target
distances were obtained from the crystal structure, and force constants were set at 1 kcal/mol-Å2. The
Cα rms deviations between the regularized crystal structures and the actual crystal structures are 0.20,
0.13, 0.18, 0.25, 0.25, 0.28, 0.24, 0.25, and 0.26 for 1PPT, 1CRN, 5PTI, 2EBX, 2RHE, 5RSA, 1LZ1, 1PPD,
and 2PTN, respectively. Surface segments have been selected from among these structures, and the
associated spaces of conformations have been searched. The resulting collections of low-energy local
minima have been useful both for evaluating the completeness of the global search procedure and for
identifying problems with the potential function. In this paper, the efficiency of our procedure for global
energy minimization of surface loops is evaluated based on the results of searches for surface segments
of BPTI and bovine trypsin. In paper II of this series, (1) potential functions will be evaluated based on their
ability to distinguish the native local minimum from a collection of low-energy local minima.

2.7 Notation

In order to allow concise description of backbone structure, we have partitioned the (φ, ψ) map into
regions. The (φ, ψ) regions used in this project are more closely correlated with distributions of (φ, ψ)
values obtained from high resolution crystal structures of globular proteins than those used previously. (22)

In Figures 4a and 4b, regions are defined separately for non-glycine and glycine residues, respectively. In
Figures 4c and 4d, distributions of the (φ, ψ) values that are obtained from a set of high-resolution protein
crystal structures are presented for non-glycine and glycine residues, respectively.

3 RESULTS and CONCLUSIONS

The crystal structure of BPTI (23) was obtained from the 5PTI entry of the protein data bank. Five sur-
face segments, each containing seven residues, were selected for global energy minimization. These
segments and the subsets of degrees of freedom with respect to which the energies of these segments
were minimized are specified in Table I. Since each of these surface segments contains seven residues,
and since the search at each component step of a trajectory attempts to examine all of the local min-
ima that can be obtained by deforming a seven-residue segment, the trajectories of local minima that
were generated to accomplish global energy minimization of these surface segments consist of a single
component step.

The results of these global searches are summarized in Tables II to IV. The number of backbone
structures in each of the collections that was generated by the backbone search procedure (consisting
of parts A and B of the component step of a trajectory) is presented in Table II. The number of back-
bone structures that were examined by applying local energy minimization during the backbone search
(parts A and B of the component step), the number of side chain structures that were examined by apply-
ing local energy minimization during the side chain searches for 40 of the resulting low-energy backbone
structures (part C of the component step), and the computer times that were required to accomplish
these searches and to accomplish the entire component step are presented in Table III. The energies,
sequences of (φ, ψ) regions, and RMS deviations from the regularized crystal structure are presented in
Table IV for the ten lowest-energy structures that were obtained from the global search.

The crystal structure of bovine trypsin (24) was obtained from the 2PTN entry of the protein data bank.
A nine-residue surface segment, the seventh surface loop along the sequence, was selected for global
energy minimization. This segment and the subset of degrees of freedom with respect to which the
energy of this segment was minimized are specified in Table V. Since this surface segment contains nine
residues, the trajectory of local minima that was generated to accomplish global energy minimization of
this surface segment consists of more than one component step. Backbone deformations were generated
for the seven-residue segments containing residues 123-129, 125-131, and 124-130 in component steps

12



Figure 4: a) Definition of (φ, ψ) regions for non-glycine residues. The shaded region will be referred
to as the X region. b) Definition of (φ, ψ) regions for glycine residues. The shaded region will be
referred to as the X region. c) Distribution of (φ, ψ) values for non-glycine residues in a collection of
high resolution protein crystal structures. d) Distribution of (φ, ψ) values for glycine residues in the
same collection of protein crystal structures.
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Table I: Description of Surface Segments of BPTI and the Associated Subsets of Degrees of Freedom. a

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

# aa b s # aa b s # aa b s # aa b s # aa b s

7 glu 0 1
10 tyr 0 1

1 arg 0 1 20 arg 0 2
22 phe 0 1 35 tyr 0 1 20 arg 0 2

6 leu 2 2 14 cys 2 2 23 tyr 2 1 36 gly 2 0 44 asn 2 2
7 glu 2 2 15 lys 2 2 24 asn 2 2 37 gly 2 0 45 phe 2 2
8 pro 2 0 16 ala 2 1 25 ala 2 1 38 cys 2 2 46 lys 2 2
9 pro 2 0 17 arg 2 2 26 lys 2 2 39 arg 2 2 47 ser 2 2

10 tyr 2 2 18 ile 2 2 27 ala 2 1 40 ala 2 1 48 ala 2 1
11 thr 2 2 19 ile 2 2 28 gly 2 0 41 lys 2 2 49 glu 2 2
12 gly 2 0 20 arg 2 2 29 leu 2 2 42 arg 2 2 50 asp 2 2

41 lys 0 2 34 val 0 2 31 gln 0 2 44 asn 0 2 53 arg 0 2
42 arg 0 2 46 lys 0 1 54 thr 0 2
aFor each surface segment, the subset of degrees of freedom with respect to which energy was minimized consists of all

backbone and side chain degrees of freedom for each residue of the surface segment (the central group of residues) and all side
chain degrees of freedom for each side chain that could possibly contact the surface segment (the residues outside of the central
group). Column headings have been abbreviated as follows: residue number– #, amino acid– aa, backbone search parameter– b,
side chain search parameter– s. For each surface segment, the degrees of freedom with respect to which energy was minimized
and the degrees of freedom that were assigned alternative values to create starting points for energy minimization are specified
by backbone and side chain search parameters. A value of 0 for the backbone or side chain search parameter indicates that
the backbone or side chain dihedral angles of the corresponding residue were fixed during the search procedure. A value of
1 indicates that the corresponding backbone or side chain dihedral angles were variable but were not searched. A value of 2
indicates that the corresponding backbone or side chain dihedral angles were searched.

Table II: Number of Backbone Structures at Each Stage of the Backbone Search for Surface Segments
of BPTI. a

Stage Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

deform backbone 467 306 1502 1739 913
cluster 297 302 1447 1643 898
remove overlaps 280 255 1289 922 881
cluster 263 232 1130 752 779
minimize energy 263 232 766 752 779
cluster 178 159 343 528 525
restrict sizeb,c 40 40 40 40 40
aThe backbone search procedure consists of parts A and B of the component step of a trajectory.
bThis collection was generated by retaining the 40 lowest-energy backbone structures of the previous collection.
cFor each surface segment, the backbone structure corresponding to the regularized crystal structure is recovered in this

collection of low-energy backbone structures.
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Table III: Number of Structures Examined by Local Energy Minimization in Backbone and Side Chain
Searches of BPTI Surface Segments and Computer Time Required to Accomplish These Searches. a

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

backbone search:b

structures examined 297 302 1447 1643 898
time required (hr) 11 11 57 50 30

side chain search:c

structures examined 11,205 13,728 6,552 12,321 30,942
time required (hr) 24 32 11 35 107

entire component step:
time required (hr) 37 47 72 92 144

aLocal energy minimization is accomplished in two parts: first overlaps are removed, then the total energy is minimized. The
set of structures that was examined by local energy minimization includes those structures for which local minimization was
aborted either because overlaps could not be removed or because the resulting overlap-free structure was not retained by our
clustering procedure. Computer time refers to elapsed (rather than cpu) time. Approximately 80% of the elapsed time was spent
in the FPS-5200 array processor, which is a single-user machine. The cpu of the Prime 550 is shared with other users.

bThe backbone search procedure consists of parts A and B of the component step of a trajectory.
cThe side chain search procedure consists of part C of the component step of a trajectory.

1, 2, and 3 respectively. The choice of this particular sequence of seven-residue segments was arbitrary.
The results of these component steps are summarized in Tables VI to VIII.

The efficiency of our procedure for global energy minimization of surface loops can be evaluated on
two levels, the efficiency with which the component steps of a trajectory are able to locate the global
energy minima within the subspaces of conformations searched by these component steps and the effi-
ciency with which the trajectory of local minima is able to locate the global energy minimum within the
space of conformations searched by the trajectory as a whole. A useful measure of the efficiency of a
procedure for global energy minimization is the amount of computer time that is required to obtain the
global minimum of a specified potential function. The amount of computer time required to complete
component steps of a trajectory is presented in Tables III and VII. The amount of computer time required
to complete a trajectory consisting of three component steps is presented in Table VII. However, since
the global minimum of our current potential function often differs significantly from the experimentally
determined crystal structure and cannot be determined with absolute confidence by existing procedures
for global energy minimization, the evidence for the completeness of these searches is suggestive rather
than conclusive.

In all of the component-step searches that have thus far been completed, the backbone structure
corresponding to the current point of the trajectory has been recovered in the collection of low-energy
backbone structures that is obtained in part B of the component-step search. If the backbone searches at
the component steps of a trajectory are not always complete, then the backbone structure corresponding
to the current point of the trajectory should sometimes not be recovered. This evidence strongly suggests
that the backbone searches at the component steps of a trajectory are complete. For each of the surface
segments of BPTI that was selected for global energy minimization, component-step searches result in
structures that have lower energy than the native structure. This evidence suggests that component-step
searches are reasonably complete. The computational efficiency of component-step searches is such that
trajectories consisting of about ten local minima are feasible using an FPS-5200 array processor. On a
computer capable of 1200 megaflops, which more accurately represents the limits of current technology,
trajectories consisting of about one thousand local minima become feasible.

For the nine-residue surface loop of trypsin, the trajectory of local minima that was generated by our
search procedure is successful at 1) lowering the energy and 2) generating a collection of low-energy
structures that contains several significantly distinct backbone conformations. Establishing the com-
pleteness of searches that are accomplished by generating a trajectory of local minima is quite difficult.
Convergence of a trajectory is probably some indication that a search is complete. However, a trajectory
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Table IV: Energy, Sequence of (φ, ψ) Regions, and RMS Deviation from the Regularized Crystal Structure for
Low-Energy Structures of BPTI Surface Segments. a

energyb RMSDc

(kcal/mol) (φ, ψ) regions (Å)

1 -703.6 B F F F E A E* 0.27
2 -693.8 B E F C F E E 1.71
3 -693.5 B F F C F E E 1.62
4 -693.5 A E F F F E E 1.57

Loop 1 5 -692.8 A F F C F F E 1.87
6 -692.2 A F F C A E E 2.30
7 -691.2 B E F C F F E 1.76
8 -688.4 C E F C F F E 1.56
9 -687.4 B F F C F F E 0.95

10 -686.2 −→A F F F E A E* 0.27

1 -633.4 F D A A*E F E 0.91
2 -633.1 F E E C E E E 1.39
3 -631.6 F D B A*F F E 0.92
4 -629.5 F D X D E F E 0.45

Loop 2d 5 -629.3 F D F F E E E 0.74
6 -629.0 F B C F E F E 0.71
7 -628.5 F A D X E F F 1.97
8 -627.9 F B F C F E E 0.74
9 -627.8 F E E D E E E 1.47

10 -627.1 F B E C F E E 0.66

1 -714.6 F E A B G B*E 1.15
2 -714.3 F E B A B B*E 0.27
3 -712.5 −→F E A A B A*E 0.28
4 -710.5 F E A A B A*E 0.97

Loop 3 5 -709.7 F E A C X B*E 0.93
6 -709.0 F E A G A B*E 0.67
7 -708.9 F E A A A B*E 0.65
8 -708.8 F E A X A*A*E 1.72
9 -708.3 F F B B B A*E 1.06

10 -707.3 F F X C*A A*E 1.25

1 -825.4 B B*E A*F F A 0.32
2 -825.3 B B*E A*F F A 0.31
3 -824.5 B B*E A*F F A 0.26
4 -823.5 −→B B*E A*F F A 0.28

Loop 4 5 -818.6 B B*E E C E G 2.13
6 -817.9 B B*E E F E G 2.12
7 -817.7 B B*E A*F F A 0.31
8 -811.4 B E*A*E E E G 2.53
9 -810.1 B B*E F D E B 2.04

10 -802.9 B C*E D X E G 2.11

1 -806.4 D E B E A A A 0.16
2 -805.3 D E B E A A A 0.15
3 -804.7 D E B E A A A 0.15
4 -803.8 D E B E A A A 0.15

Loop 5 5 -801.1 D E A E A A A 0.12
6 -799.8 D E B E A A A 0.31
7 -798.5 D E B E A A A 0.14
8 -797.5 −→D E B E A A A 0.15
9 -797.0 D E B E A A A 0.41

10 -790.5 D E C D A A A 0.49

aThe structure that corresponds to the regularized crystal structure is marked by an arrow.
bThe energies reported in this Table were calculated without a cutoff distance.
cThe RMS deviations reported in this Table are RMS deviations from the regularized crystal structure (having ECEPP values of

bond lengths and bond angles). The Cα RMS deviation between the regularized crystal structure and the actual crystal structure
is 0.177Å. Deviations are calculated only for the backbone heavy atoms of the surface loop that is being searched.

dThe sequence of (φ, ψ) regions for loop 2 of the regularized crystal structure is F D F D E F E . Thirteen structures were
obtained for this surface segment that have lower energy than the regularized crystal structure.
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Table V: Description of a Surface Loop of Bovine Trypsin and the Associated Subset of Degrees of
Freedom. a

Loop 7

# aa b s

123 asn 2 2
124 thr 2 2
125 lys 2 2
126 ser 2 2
127 ser 2 2
128 gly 2 0
129 thr 2 2
130 ser 2 2
131 tyr 2 2
aSee footnote a of Table I.

Table VI: Number of Backbone Structures at Each Stage of the Backbone Search for Each Component
Step of the Trajectory Generated to Accomplish Global Energy Minimization of Surface Loop 7 of Bovine
Trypsin. a

Stage Step 1 Step 2 Step 3

deform backbone 1730 631 534
cluster 1349 516 418
remove overlaps 1295 500 394
cluster 1224 466 377
minimize energy 1224 466 377
cluster 973 362 300
restrict sizeb,c 80 80 80
aSee footnote a of Table II.
bThis collection was generated by retaining the 80 lowest-energy backbone structures of the previous collection.
cFor each component step, the backbone structure corresponding to the previous point of the trajectory is recovered in this

collection of low-energy backbone structures.

Table VII: Number of Structures Examined by Local Energy Minimization in Backbone and Side Chain
Searches at Each Component Step of the Trajectory for Surface Loop 7 of Bovine Trypsin and Computer
Time Required to Accomplish These Searches. a

Step 1 Step 2 Step 3

backbone search:
structures examined 1349 516 418
time required (hr) 134 46 36

side chain search:
structures examined 28,818 33,234 34,374
time required (hr) 66 76 71

entire component step:
time required (hr) 216 137 121

aSee footnotes a-c of Table III.
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Table VIII: Energy, Sequence of (φ, ψ) Regions, and RMS Deviation from the Regularized Crystal Structure for
Low-Energy Structures Obtained at Each Component Step of the Trajectory for Surface Loop 7 of Bovine Trypsin.
a

energyb RMSDc

(kcal/mol) (φ, ψ) regions (Å)

1 -1281.7 F B E F A*E*E D E 0.97
2 -1278.3 F B F A D E*E E E 1.17
3 -1278.2 F D E A E E*E X E 1.10
4 -1277.4 F B F F A*E*E D E 1.05

Step 1d 5 -1275.5 F B E F A*E*E E E 1.35
6 -1271.8 F B E F A*E*E D E 1.32
7 -1270.4 F A E F A*E D E E 1.15
8 -1269.5 F B F C A*E E D E 1.81
9 -1268.8 F B A*F A*C*E E E 5.11

10 -1257.5 F X C A D X*E E F 6.41

1 -1281.7 −→F B E F A*E*E D E 0.97
2 -1279.3 F B F A E E*E D F 1.12
3 -1279.1 F B F F A*E*E D E 1.08
4 -1278.7 F B F A B E*E D E 0.89

Step 2 5 -1278.4 F B F F A*E*E D E 1.11
6 -1278.2 F B E F A*E E E E 1.04
7 -1277.9 F B F F A*E*E D E 1.06
8 -1276.3 F B F F A*E*E D E 1.09
9 -1274.8 F B E F A*E E D E 1.04

10 -1274.4 F B E F A*E E D F 1.10

1 -1283.0 F B E A A C E D E 0.89
2 -1281.7 −→F B E F A*E*E D E 0.97
3 -1280.6 F B E A C E*E D E 0.90
4 -1279.3 F B C A C E*E D E 0.80

Step 3 5 -1278.8 F B E A C E*E D E 0.80
6 -1278.7 F B C A C E*E D E 0.80
7 -1277.8 F B E A E E*E E E 1.06
8 -1275.3 F B E A C E*E E E 1.02
9 -1274.0 F B E F A*E D D E 1.50

10 -1271.2 F B A*E A*C*E E E 3.89

aThe structure that corresponds to the previous point of the trajectory is marked by an arrow. The initial point of the trajectory
is the regularized crystal structure.

bThe energies reported in this Table were calculated without a cutoff distance.
cThe RMS deviations reported in this Table are RMS deviations from the regularized crystal structure (having ECEPP values of

bond lengths and bond angles). The Cα RMS deviation between the regularized crystal structure and the actual crystal structure
is 0.264Å. Deviations are calculated only for the backbone heavy atoms of the surface loop that is being searched.

dThe sequence of (φ, ψ) regions for loop 7 of the regularized crystal structure is F B F A E E*E E E . In the first component
step, 23 structures were obtained that have lower energy than the regularized crystal structure.
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of local minima could possibly converge to a local minimum other than the global minimum. For a sur-
face loop containing more than seven residues, some regions of the space of backbone conformations
could possibly be accessible to a trajectory only if backbone deformations are generated for segments
containing eight or more residues at each component step. Such a situation, if it exists, represents a
generalization of the multiple-minima problem to the space of local minima. Convergence of several
trajectories to the same conformation is probably a good indication that a search is complete. However,
since generation of several trajectories is computationally expensive, and since establishing the com-
pleteness of global searches is less relevant to the primary goal of the overall project than increasing
the accuracy of the potential function, we have not attempted to generate several trajectories for any
surface segment.

Our procedure for global energy minimization of surface loops allows efficient examination of large
collections of local energy minima. When applied to protein crystal structures, this procedure provides
a mechanism for obtaining structures that have lower energy than the native structure. Even though
evidence for the completeness of the resulting global searches is not conclusive, the capabilities of our
global search procedure are clearly sufficient for the first intended application, identifying and correct-
ing problems with the potential function, and probably sufficient for the second intended application,
predicting protein structure using both the crystal structure of a homologous protein and global energy
minimization.

4 DISCUSSION

A clear distinction should be made between structure prediction using a combination of sequence
homology and global energy minimization, which we and others are attempting to implement, (4–8) and
structure prediction using sequence homology alone, in which energy is not used or is used in a limited
way to examine only one (or a few) local minima. (9,10,25–27) Structure predictions using a combination of
sequence homology and global energy minimization attempt to obtain a significant amount of structural
information from an empirically parameterized function representing energy. In contrast, structure pre-
dictions using sequence homology alone obtain very little structural information from energy. The more
advanced procedures of the latter type (9,10,26) use sequence homology to obtain information about the
structure of the surface.

The procedure for generating one low-energy side chain conformation for each low-energy back-
bone conformation (part C of the component step of the trajectory) has evolved into its present form
mainly because of selective pressure on the required computational time. We have not yet accumulated
enough data for a complete evaluation of the effectiveness of this procedure. The possibility exists that
in some cases component-step searches are not complete because the values of backbone degrees of
freedom are not allowed to vary during the local minimizations of the side chain search. However, even
if component-step searches are in some cases not complete, the trajectory as a whole could still be
effective for sampling the space.

Our procedure for global energy minimization of surface loops provides a mechanism for utilizing the
independence of spatially separated regions of a protein. The following example demonstrates the impor-
tance of utilizing independence. Consider a protein for which distance constraints have been obtained
from NMR experiments. Assume that the structure of the protein is uniquely determined everywhere
with the exception of six surface segments, that these surface segments are spatially separated, and
that ten local minima are consistent with the distance constraints for each of these surface segments.
One approach to global energy minimization for this system consists of applying one of the various dis-
tance geometry procedures (28,29) to satisfy the distance constraints and then minimizing the energy of
the resulting structure. Since approximately 106 local minima exist for this system, this procedure would
need to be applied on the order of 106 times to obtain the native conformation. An alternative approach
consists of applying the distance geometry program once to satisfy the distance constraints, and then
applying our procedure for global energy minimization of surface loops independently to each of the six
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surface loops. This alternative approach would require about 60 minimizations.
Procedures for global energy minimization of surface loops offer an unprecedented opportunity for

improving the accuracy of the potential function. Previous methods for comparing the accuracies of
various potential functions have been based on energy minimization within the native potential well and
subsequent analysis of the movement away from the experimental structure. (30–32) Such methods are
more sensitive to the radii of the various atom types than to the magnitudes, distance dependences,
and angular dependences of the various interactions. Methods for comparing the accuracies of various
potential functions based on global searches of proteins have not been possible because a molecule the
size of BPTI is too large for current global optimization methods and because the ensemble of solution
structures for a molecule significantly smaller than BPTI is difficult to characterize experimentally.

Structure prediction using both the crystal structure of a homologous protein and global energy mini-
mization offers the opportunity for a major advance in the attempt to obtain useful structural information
from a function representing energy. The crystal structure of a homologous protein is available in a sig-
nificant fraction of protein structural problems. The efficiency of our search procedure and the existence
of computer hardware capable of gigaflops suggest that in most of these cases the technology for ac-
complishing the necessary global energy minimization is currently available (although this assessment
could change if the complexity of the potential function needs to be significantly increased). Therefore,
the development of a more accurate potential function is perhaps the only obstacle preventing numerous
successful applications.

Our program has evolved slowly over a period of several years and will probably continue to evolve,
although more slowly, throughout the project. It has reached a level of efficiency that is sufficient for
many of the intended applications, and therefore, the focus of the project has now shifted from program
development to applications. However, an accurate potential function would assist in the continued
evolution of the program by allowing direct evaluation of efficiency. A more distant application of our
program (after an accurate potential function has been obtained and after the program has evolved
to require less structural information from sequence homology) might be to obtain detailed molecular
structures from the schematic protein structures predicted using either pattern matching (33,34) or pattern
recognition (35) techniques.

5 Comparison to Other Work

An alternative procedure for global energy minimization of surface loops has been described by
Levinthal and coworkers. (6,7) Their procedure for searching the space of backbone conformations con-
sists of a large number of local minimizations starting from a uniform distribution of loop deformations,
molecular dynamics trajectories starting from the endpoints of the local minimizations, and local mini-
mizations starting from the endpoints of the molecular dynamics trajectories. They report calculations
using the CHARMM/GEMM computer program which has been programmed in assembly language to run
efficiently on a Star ST-100 array processor. The Star ST-100 has a theoretical peak performance of 100
megaflops, approximately eight times faster than our FPS-5200. While many of the features of their
procedure are similar to features of our procedure, there are also several differences.

Levinthal and coworkers have not attempted to account for the effects of hydration, except through
the use of a distance-dependent dielectric constant. In contrast, we include a function representing
hydration free energy at every stage of the calculations as a component of our total energy. Our potential
function includes hydrogen atoms explicitly whereas the CHARMM/GEMM potential function uses united
atoms. As a result, the function that we optimize requires at least four times more computation than the
function that they optimize.

To obtain overlap-free backbone deformations, Levinthal and coworkers generate random deforma-
tions that span the entire loop, resulting in a uniform distribution of deformations, then discard those
structures that contain overlaps. In contrast, we generate a nonuniform distribution of deformations
which span the entire loop (when considered over several steps of the trajectory), then actively remove
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overlaps from these structures. In both procedures, the time required to generate overlap-free structures
is negligible in comparison to the time required to minimize the total energy of these structures. How-
ever, as a consequence of their conservative definition of overlap, their overlap-free structures will in
general have very high energies whereas our overlap-free structures have negative values of the 12-2e
energy.

Levinthal and coworkers use a conjugate gradient minimizer, which requires about 1,000 steps to
minimize the energy of one conformation for a seven-residue surface loop. In contrast, we use a Newton
minimizer, which in general requires fewer than 30 steps to minimize the energy of one overlap-free
conformation for a seven-residue surface loop.

We have developed an automated procedure for efficiently generating low-energy side chain confor-
mations whereas Levinthal and coworkers currently rely on an interactive procedure. They have not yet
attempted to predict the native conformation based on minimization with respect to all the degrees of
freedom associated with a loop. In contrast, after generating one low-energy side chain conformation for
each low-energy backbone conformation, we minimize the energy with respect to all of the degrees of
freedom associated with the loop to select the next point of the trajectory.

Levinthal and coworkers report global searches of the space of backbone conformations for surface
loops containing five, seven, nine, and eleven residues. These four searches require 700 hours of com-
puter time. It is difficult to make a direct comparison of the computer time required by the two proce-
dures to search the space of backbone conformations for a surface loop of a given size because they
have not reported the computer times required for individual searches. It is also difficult to make a the-
oretical comparison of the two procedures. For small peptides, a large number of minimizations from
randomly chosen starting conformations is one of the least efficient methods for searching the space of
conformations. However, we have no experience with small peptides that is relevant to a comparison of
the efficiencies with which a molecular dynamics trajectory and a trajectory of local minima are able to
search the space of conformations.

Other procedures for global energy minimization of surface loops have been described by Moult and
James (8) and by Bruccoleri and Karplus. (4) A summary of the differences between these procedures and
the procedure of Levinthal and coworkers has been presented elsewhere. (6)

A Generating Loop Deformations

In this Appendix, we describe our procedure for deforming a seven-residue segment of the initial
backbone structure. A seven-residue segment of the initial backbone structure is deformed by obtaining
alternative values for six consecutive (ψ, φ) pairs and the six intervening ω dihedral angles such that the
ω values are set at 180◦ and such that the relative position and orientation of the nondeformed segments
of the initial backbone structure are approximately unaltered. Backbone deformations that satisfy exactly
the condition that the relative position and orientation of the nondeformed segments be unaltered will be
referred to as exact loop deformations. Backbone deformations that satisfy this condition approximately
will be referred to as approximate loop deformations.

Six dihedral angles can be assigned arbitrary values before the set of exact loop deformations that
are consistent with these assigned values becomes discrete. After arbitrary values have been assigned
to six dihedral angles, the problem of obtaining exact loop deformations requires solving a system of
six equations expressing relationships between the values of the remaining six dihedral angles. In our
procedure, three (ψ, φ) pairs will be assigned values from discrete collections of ordered pairs, and values
for the remaining three (ψ, φ) pairs will be calculated analytically. The resulting system of equations is
slightly less complicated when the values for three (φ, ψ) pairs are calculated analytically rather than the
values for three (ψ, φ) pairs. A straightforward but lengthy procedure for solving this less complicated
system of equations has been described by Gō and Scheraga. (11)

Our procedure introduces an approximate backbone geometry that considerably simplifies the cal-
culations. As a consequence of this approximation, the resulting loop deformations are not quite exact.
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However, the purpose of generating loop deformations is to obtain starting points for energy minimiza-
tion, distance constraints force the relative position and orientation of the rigid segments of the protein
to become exactly unaltered during energy minimization, and energy minimization is no more difficult
for approximate loop deformations than for exact loop deformations. Generating approximate loop defor-
mations requires less computation than generating exact loop deformations. However, even generating
exact loop deformations requires much less computation than minimizing the energy of the resulting
structures. We have chosen to generate approximate deformations mainly because the corresponding
procedure is easier to understand and to program than the procedure for generating exact deformations.

A.1 Generating Cartesian Coordinates from Internal Coordinates

In this section, we describe the generation of cartesian coordinates from internal coordinates for a
chain consisting of N + 3 points. The cartesian coordinates of this chain are represented by the vector
x. The set of indices corresponding to the points of the chain is chosen to be {−2,−1, 0, . . . , N}. If
{x−2, x−1, . . . , xm−1} have been specified, then xm can easily be calculated if the length dm of the (m,m−
1) bond, the angle λm formed by the (m,m − 1) and (m − 1,m − 2) bonds, and the dihedral angle χm
about the (m − 1,m − 2) bond formed by the (m,m − 1) and (m − 2,m − 3) bonds have been specified.
The vectors d, λ, and χ are referred to as internal coordinates. The sets of indices of d, λ, and χ are
{−1, 0, . . . , N}, {0, 1, . . . , N}, and {1, 2, . . . , N}, respectively. The range of values for each component
of d, λ, and χ are [ 0,∞), [ 0, π], and [−π, π), respectively.

Consider a chain consisting of N + 3 points for which the 3(N + 3)− 6 internal coordinates have been
specified. Since the internal coordinates are independent of translation and rotation of the chain as a
whole, we can assume that the chain has been positioned and oriented such that

x0 = ( 0, 0, 0)

x−1 = ( −d0, 0, 0)
x−2 = ( −d0 + d−1 cosλ0, d−1 sinλ0, 0) .

(A1)

The conformation that is defined by the specified bond lengths, by the specified value of λ0, and by

λj = 180◦

and χj = 0◦

}
for j ∈ {1, 2, . . . , N} (A2)

is a convenient reference conformation because cartesian coordinates can easily be determined for this
conformation. For a conformation with arbitrary values of bond angles and dihedral angles, the cartesian
coordinates can be generated from the cartesian coordinates of the reference conformation using two
basic operations, rotation about the z-axis by π − λ to set bond angles,

U(λ) =

 cos(π − λ) − sin(π − λ) 0

sin(π − λ) cos(π − λ) 0

0 0 1

 , (A3)

and rotation about the x-axis by χ to set dihedral angles,

R(χ) =

 1 0 0

0 cosχ − sinχ

0 sinχ cosχ

 . (A4)

Conceptually, rotations begin with point N and work backward to point 1. For point m, the rotations
R(χm)U(λm) about point m−1 are applied to points {m,m+1, . . . , N}. It would be computationally inef-
ficient to calculate cartesian coordinates using this sequence of rotations. However, once the equations
have been determined, the computational efficiency can be improved by performing the component op-
erations in a different order. The mapping of internal coordinates into cartesian coordinates for points
{1, 2, . . . , N} is described by the equations
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x1 = R(χ1)U(λ1)

 d1
0

0


x2 = R(χ1)U(λ1)


 d1

0

0

+R(χ2)U(λ2)

 d2
0

0


= x1 +R(χ1)U(λ1)R(χ2)U(λ2)

 d2
0

0


xN = xN−1 +R(χ1)U(λ1) . . . R(χN )U(λN )

 dN
0

0

 .

(A5)

For convenience, we define
Tm = R(χ1)U(λ1) . . . R(χm) . (A6)

We refer to T as the rotation matrix.

A.2 Expressing Relationships Between the Six (ψ, φ) Values

Consider the protein backbone shown in Figure A1. An approximate loop deformation will be gener-
ated by obtaining alternative values for the six labeled (ψ, φ) pairs and the six intervening ω dihedral
angles such that the ω values are set at 180◦ and such that x16, x17, and x18 are approximately unaltered.
The relationships between x16, x17, and x18 can be expressed as

x17 = x16 + T17U(λ17)

 d17
0

0


= x16 + T18

 d17
0

0


x18 = x17 + T18U(λ18)

 d18
0

0

 .

(A7)

Therefore, the six conditions that x16, x17 and x18 remain unaltered are equivalent to the six conditions
that x17 and T18 remain unaltered. For convenience, we define

x(1) = x17

and T (1) = T18 .
(A8)

These quantities, which will be referred to as the initial target coordinates and the initial target rotation
matrix, are calculated using the ECEPP values for bond lengths and bond angles and the dihedral angles
of the initial backbone structure.

The (ψ, φ) pairs labeled (ψ′1, φ
′
1) and (ψ′′1 , φ

′′
1) in Figure A1 will be assigned values from discrete collec-

tions of (ψ, φ) values. These discrete collections consist of the grid points of a two-dimensional grid that
has 40◦ separations between neighboring grid points intersected with the regions of the (ψ, φ) map that
are observed to exist in protein crystal structures for the corresponding pair of amino acids. The (ψ, φ)

pair labeled (ψ4, φ4) in Figure A1 will be assigned values from a discrete collection that depends on the
previously assigned values of (ψ′1, φ

′
1) and (ψ′′1 , φ

′′
1). This discrete collection consists of the grid points of

a two-dimensional grid that has 20◦ separations between neighboring grid points intersected with the set
of points for which solutions exist for the remaining three (ψ, φ) pairs.
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Figure A1: Definition of symbols used to denote dihedral angles contained in a collection of six consec-
utive (ψ, φ) pairs.
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Figure A2: Definition of symbols used to denote bond angles of the protein backbone.

The notation that is used for the bond angles and dihedral angles of the protein backbone is defined
in Figure A2. The contribution of each (ψ, ω, φ) triplet to the rotation matrix is

R(ψm)U(ν)R(ωm)U(σ)R(φm)U(τm) . (A9)

To simplify this sequence of rotations, we introduce the approximations that σ = ν = 118◦ and that
τ = 110◦ for each amino acid. The ECEPP values for these bond angles are 121◦ for σ, 115◦ for ν, and
between 108◦ and 111◦ for τ . Using these approximations, the contribution of each (ψ, ω, φ) triplet to the
rotation matrix becomes

R(ψm + φm + π)U(τ) . (A10)

For convenience, we define
θm = ψm + φm + π , (A11)

U = U(τ)

Rj = R(θj) ,
(A12)
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and b = U(τ)

 d(Cα−C′)

0

0


b′ = U(ν)

 d(C′−N)

0

0

+ U(ν)R(π)U(σ)

 d(N−Cα)
0

0

 .

(A13)

We use the symbol ≡ to indicate that quantities following this symbol are being introduced and defined
by quantities preceding this symbol that are grouped by parenthesis or braces. We use boldface type
to distinguish vectors and matrices that depend only on degrees of freedom for which values have been
assigned at some previous point in the procedure from vectors and matrices that depend on degrees of
freedom for which values have not yet been assigned. We use a dagger to indicate a transposed matrix.

Using approximate backbone geometry, the relationships between the six (ψ, φ) values of a loop
deformation can be expressed by the equations

T(1) =
(
R′1U

)(
R1UR2UR3UR4

)(
UR′′1

)
≡ AT (2)B (A14)

x(1) = R(ψ′1)b
′

+R′1b

}
+AR(ψ1)b

′

+AR1b

+AR1UR(ψ2)b
′

+AR1UR2b

+AR1UR2UR(ψ3)b
′

+AR1UR2UR3b

+AR1UR2UR3UR(ψ4)b
′


+AT (2)b

+AT (2)UR(ψ′′1 )b
′

}
≡ x′

+Ax(2)

+AT (2)x′′ .

(A15)

A.3 Assigning Values of (ψ′
1, φ

′
1), and (ψ′′

1 , φ
′′
1) from Discrete Collections

Values are assigned to (ψ′1, φ
′
1) and (ψ′′1 , φ

′′
1) from the corresponding discrete collections of (ψ, φ) val-

ues. The required relationships between the four (ψ, φ) values that remain to be assigned can be ex-
pressed by the equations

T(2) = R1UR2UR3UR4 (A16)

x(2) = R(ψ1)b
′

+ R1b

+ R1UR(ψ2)b
′

+ R1UR2b

+ R1UR2UR(ψ3)b
′

+ R1UR2UR3b

+ R1UR2UR3UR(ψ4)b
′ ,

(A17)

which are obtained from equations A14 and A15 by eliminating terms that depend only on degrees of
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freedom for which values have been assigned. Equation A16, which requires that the rotation matrix be
unaltered by the deformation, expresses relationships between the values of θ1, θ2, θ3 and θ4.

A.4 Determining the Range of θ4

In this section, we determine the set of values of θ4 for which two distinct values of (θ1, θ2, θ3) can be
obtained by solving equation A16. For convenience, we define

c = cos(π − τ)
s = sin(π − τ)

cθj
sθj

=

=

cos(θj)

sin(θj)

}
for j ∈ {1, 2, 3, 4} .

(A18)

Equation A16 can be expressed in an alternative form as

T(2)R†4U
† = R1UR2UR3 , (A19)

which can be written more explicitly as t11c− t12scθ4 + t13ssθ4 − −
− − −
− − −

 =

 1 0 0

0 cθ1 −sθ1
0 sθ1 cθ1

 c2 − s2cθ2 −cs(1 + cθ2) ssθ2
cs(1 + cθ2) −s2 + c2cθ2 −csθ2

ssθ2 csθ2 cθ2

 1 0 0

0 cθ3 −sθ3
0 sθ3 cθ3

 .

(A20)

The (1, 1) matrix element of the matrix product that constitutes the right hand side of this equation
depends only on θ2.

It is useful to consider a geometric description of the sequence of rotations R1UR2UR3. Figure A3
shows the effect of these rotations on a unit vector e that lies along the x-axis. The rotation R3 maps e
into itself. U rotates R3e about the z-axis by 70◦. R2 rotates UR3e about the x-axis resulting in the set
of possible values shown in Figure A3a. U rotates this set about the z-axis resulting in the set of values
shown in Figure A3b. Finally, R1 rotates this set about the x-axis. Therefore, the set of possible rotations
R1UR2UR3 map e onto all points of the unit sphere that have an x-component greater than or equal to
c2 − s2. If the rotation T(2)R†4U

† maps e onto any point of the unit sphere that has an x-component less
than c2 − s2, then no values of (θ1, θ2, θ3) exist that satisfy equation A19. If the rotation T(2)R†4U

† maps
e onto any point of the unit sphere that has an x-component greater than c2 − s2 and less than 1.0, then
there exist exactly two values of (θ1, θ2, θ3) that satisfy equation A19. In this case, there exist exactly
two values of θ2 such that the x-component of R1UR2UR3e is equal to the x-component of T(2)R†4U

†e.
For each solution θ2, there exists a unique value of θ1 such that the y and z-components of R1UR2UR3e

equal the y and z-components of T(2)R†4U
†e. For each solution (θ1, θ2), there exists a unique value of θ3

such that R1UR2UR3 maps the y and z axes into the same directions as T(2)R†4U
†.

The set of θ4 values for which solutions to equation A16 exist can be determined from the equation
corresponding to the (1, 1) matrix element of equation A20,

t11c− t12scθ4 + t13ssθ4 ≥ c2 − s2 , (A21)

which can be written more concisely as
cos(θ4 − α) ≥ δ , (A22)

where
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Figure A3: Subsets of points (indicated by heavy lines) on the unit sphere resulting from subsets of
rotations applied to the unit vector along the x-axis. The subsets of rotations are described by a)
R2UR3, and b) UR2UR3 where (θ1, θ2, θ3) ∈ [−π, π)3.
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a =
(
(t12s)

2
+ (t13s)

2
) 1

2

(cosα, sinα) =

(
−t12s
a

,
t13s

a

)
δ =

(c2 − s2)− t11c
a

.

(A23)

The set of values of θ4 for which two distinct values of (θ1, θ2, θ3) can be obtained by solving equation A16
is determined using equation A22. A discrete collection of θ4 values is selected from this set, and a value
is assigned to θ4 from this discrete collection.

A.5 Calculating (θ1, θ2, θ3)

Two values of (θ1, θ2, θ3) are obtained by solving equation A16. Let

T(3) = T(2)R†4U
† . (A24)

Then equation A19 can be written in the simplified form

T(3) = R1UR2UR3 . (A25)

The two solutions for θ2 are obtained by solving the equation corresponding to the (1, 1) matrix element
of equation A25,

t11 = c2 − s2cθ2 . (A26)

For each solution that is obtained for θ2, the unique solution for (θ1, θ3) is obtained by solving equa-
tion A25.

A.6 Determining the Range of ψ4

Equation A17, which requires that the position of atom 17 be unaltered by the deformation, expresses
relationships between the values of ψ1, ψ2, ψ3 and ψ4. Since values have now been assigned to θ1, θ2, θ3
and θ4; equation A17 can be rewritten as

x(2) = R(ψ1)b
′

+ R1b

+ R1UR(ψ2)b
′

+ R1UR2b

+ R1UR2UR(ψ3)b
′

+ R1UR2UR3b

+ R1UR2UR3UR(ψ4)b
′ .

(A27)

The procedure that will be used to obtain solutions for (ψ1, ψ2, ψ3, ψ4) is analogous to the procedure that
was used to obtain solutions for (θ1, θ2, θ3, θ4).

In this section, we obtain a discrete collection of ψ4 values and assign a value to ψ4 from this discrete
collection. Let

x(3) = x(2) − R1b

− R1UR2b

− R1UR2UR3b

(A28)

and x(4) = U†R†1x
(3) . (A29)

For convenience, we define
G = R2UR3U (A30)
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and c1 = cos(ψ1 − θ1)
s1 = sin(ψ1 − θ1)

cψj
sψj

=

=

cos(ψj)

sin(ψj)

}
for j ∈ {2, 3, 4} .

(A31)

Equation A27 can be expressed in an alternative form as

x(4) −GR(ψ4)b
′ = U†R(ψ1 − θ1)b′

+ R(ψ2)b
′

+ R2UR(ψ3)b
′ ,

(A32)

which can be written more explicitly asx1
x2
x3

− b′1

 c

−s
0

+

 1

0

0

+

 c

scθ2
ssθ2

+

 g11
g21
g31


−b′2

 g12cψ4 + g13sψ4

g22cψ4 + g23sψ4

g32cψ4 + g33sψ4


= b′2


 sc1

cc1

s1

+

 0

cψ2

sψ2

+

 −scψ3

ccθ2cψ3 − sθ2sψ3

csθ2cψ3 + cθ2sψ3

 .

(A33)

Let

x(5) =
1

b′2

x1
x2
x3

− b′1

 c

−s
0

+

 1

0

0

+

 c

scθ2
ssθ2

+

 g11
g21
g31


 . (A34)

Then x1
x2
x3

 −

 g12cψ4 + g13sψ4

g22cψ4 + g23sψ4

g32cψ4 + g33sψ4


=

 sc1

cc1

s1

+

 0

cψ2

sψ2

+

 −scψ3

ccθ2cψ3 − sθ2sψ3

csθ2cψ3 + cθ2sψ3

 .

(A35)

The right hand side of equation A35 is the sum of three unit vectors, each of which is a function of
only one ψ dihedral angle. For convenience, we define

qi =
(
(gi2)

2 + (gi3)
2
) 1

2

and (cos ηi, sin ηi) =

(
gi2
qi
,
gi3
qi

)
for i ∈ {1, 2, 3} .

(A36)

The discrete collection from which ψ4 will be assigned values is reduced by requiring that each component
of the left hand side of equation A35 be within the range of possible values for the right hand side. These
requirements can be expressed by the equations
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cos(ψ4 − η1) ∈
[
(x1 − δ1)

q1
,
(x1 + δ1)

q1

]
cos(ψ4 − η2) ∈

[
(x2 − δ2)

q2
,
(x2 + δ2)

q2

]
cos(ψ4 − η3) ∈

[
(x3 − δ3)

q3
,
(x3 + δ3)

q3

]
,

(A37)

where

δ1 = s+ s

δ2 = c+ 1 +
(
(ccθ2)

2
+ (sθ2)

2
) 1

2

δ3 = 1 + 1 +
(
(csθ2)

2
+ (cθ2)

2
) 1

2

.

(A38)

These three equations determine three subsets of [−π, π). The discrete collection from which ψ4 will be
assigned values is limited to the intersection of these three subsets. A value from this discrete collection
is assigned to ψ4.

A.7 Calculating (ψ1, ψ2, ψ3)

The values of (ψ1, ψ2, ψ3) are obtained by solving equation A35. Let

x(6) = x(5) −

 g12cψ4 + g13sψ4

g22cψ4 + g23sψ4

g32cψ4 + g33sψ4

 . (A39)

Then equation A35 can be written in the simplified formx1
x2
x3

 =

 s cos(ψ1 − θ1)
c cos(ψ1 − θ1)
sin(ψ1 − θ1)

+

 0

cψ2

sψ2

+

 −scψ3

ccθ2cψ3 − sθ2sψ3

csθ2cψ3 + cθ2sψ3

 . (A40)

The first component of equation A40 can be used to express (ψ1 − θ1) as an explicit function of ψ3,

cos(ψ1 − θ1) =
(x1
s

)
+ cψ3

≡ µ1 + cψ3 .
(A41)

For all values of ψ3 such that (µ1 + cψ3) ∈ (−1, 1), there exist two solutions of (ψ1 − θ1),

(
cos(ψ1 − θ1), sin(ψ1 − θ1)

)
=


(
µ1 + cψ3,

[
1− (µ1 + cψ3)

2
] 1

2

)
(
µ1 + cψ3, −

[
1− (µ1 + cψ3)

2
] 1

2

) . (A42)

The second component of equation A40 can be used to express ψ2 as an explicit function of ψ3,

cψ2 = (x2 − cµ1)− c(1 + cθ2)cψ3 + sθ2sψ3

≡ µ2 + h cos(ψ3 − β) .
(A43)

For all values of ψ3 such that (µ2 + h cos(ψ3 − β)) ∈ (−1, 1), there exist two solutions of ψ2,

(
cψ2, sψ2

)
=


(
µ2 + h cos(ψ3 − β),

[
1−

(
µ2 + h cos(ψ3 − β)

)2] 1
2

)
(
µ2 + h cos(ψ3 − β), −

[
1−

(
µ2 + h cos(ψ3 − β)

)2] 1
2

) . (A44)
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These expressions for (ψ1 − θ1) and ψ2 in terms of ψ3 can then be substituted into the third component
of equation A40 to give the four equations

(sgn1)
[
1− (µ1 + cψ3)

2
] 1

2

+ (sgn2)
[
1−

(
µ2 + h cos(ψ3 − β)

)2] 1
2

+ z cos(ψ3 − γ)− x3 = 0 ,
(A45)

where (sgn1) and (sgn2) are equal to +1 or −1,

z =
(
(csθ2)

2
+ (cθ2)

2
) 1

2

and (cos γ, sin γ) =

(
csθ2
z
,
cθ2
z

)
.

(A46)

The set of ψ3 values for which these functions are defined is the intersection of the subsets of [−π, π)
for which (ψ1 − θ1) and ψ2 are defined. The zeros of these four equations are obtained using numerical
methods.

A.8 Discussion

Our procedure for generating approximate loop deformations can easily be extended to allow gener-
ation of alternative values for seven or more (ψ, φ) pairs. When six (ψ, φ) pairs are used, the number of
deformations that is generated sometimes exceeds 2,500. When seven (ψ, φ) pairs are used, the number
of deformations that is generated is greater than the number of energy minimizations that is currently
feasible. Therefore, the number of (ψ, φ) pairs for which alternative values are obtained has been limited
to six in our global search procedure.

B Removing Overlaps

In this Appendix, we describe our procedure for removing overlaps. We define an overlap to be a 12-
2e interaction with energy greater than 3.5 kcal/mol. Overlaps are eliminated (if possible) by minimizing
the 12-2e interaction energy using a procedure that achieves efficiency by exploiting properties that are
specific to the function being minimized.

Let X be a subset of degrees of freedom that controls the motion of a surface loop, let A be the
set of protein atoms, and let E ⊂ A×A be the set of atom pairs for which interactions are calculated
in local minimization of the total energy with respect to X (using our procedure for local minimization).
The number of degrees of freedom in X, the number of atoms in A, and the number of atom pairs in E
will be represented by #X, #A, and #E, respectively. The values of the dihedral angles in X will be
represented by the vector χ. Using this notation, the 12-2e interaction energy can be written explicitly
as

f(χ) =
∑

(a,b)∈E

f(a,b)(χ) (B1)

where

f(a,b)(χ) = ε(Ta,Tb)

{
n

(
ρ(Ta,Tb)

r(a,b)(χ)

)12

− 2

(
ρ(Ta,Tb)

r(a,b)(χ)

)2e
}
. (B2)

B.1 Extremely Small Cutoff Distance

For a conformation χ′, let E′(χ′) be the set of atom pairs (a, b) ∈ E such that r2(a,b)(χ
′) < ρ2(Ta,Tb), and

let (#E′) be the number of atom pairs in E′. If the conformation χ′ contains one or more overlaps, then∑
(a,b)∈E

f(a,b)(χ) ≈
∑

(a,b)∈E′(χ′)

f(a,b)(χ) (B3)
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holds for all conformations χ in a region of space that surrounds χ′. Each step of our procedure for
eliminating overlaps consists of calculating E′(χ′) and minimizing∑

(a,b)∈E′(χ′)

f(a,b)(χ) (B4)

plus a sum of harmonic distance constraints, within a region for which equation B3 is expected to hold,
using Newton’s method. This basic unit of computation, which will be referred to as a macrostep, is iter-
ated either until all overlaps are eliminated or until the value of the function ceases to change. Typically,
between 10 and 20 macrosteps are required to eliminate overlaps from the backbone deformations that
are generated by our search procedure. At each macrostep, minimization of B4 plus a sum of harmonic
distance constraints within a region for which equation B3 is expected to hold typically requires between
10 and 20 steps using Newton’s method. These minimization steps will be referred to as microsteps.
The extremely small cutoff distance ρ(Ta,Tb), which allows minimization steps to be calculated using ex-
tremely small collections of interactions, is the primary means by which the efficiency of minimization is
increased.

B.2 r2

2
Expansion

To increase further the efficiency of minimization, we approximate the sum B4 by a nearly equivalent
sum for which derivatives can be obtained with less computation. For each atom pair (a, b) ∈ E′(χ′), we

replace f(a,b) by a nearly equivalent function in which
r2(a,b)

2 is replaced by a second order Taylor expansion
about χ′. For all (a, b) ∈ E′(χ′), let S(a,b) ⊂ X be the set of j ∈ X such that r(a,b) is dependent on the
value of χj , and let #S(a,b) be the number of dihedral angles in S(a,b). For all j, k ∈ S(a,b), let

s
(a,b)
j =

∂

∂χj

(
r2(a,b)

2

)

s
(a,b)
jk =

∂2

∂χj∂χk

(
r2(a,b)

2

)
.

(B5)

For each (a, b) ∈ E′(χ′), we replace
r2(a,b)

2 by

q(a,b)(χ
′ + δχ) =

r2(a,b)(χ
′)

2

+
∑

j∈S(a,b)

s
(a,b)
j (χ′) δχj

+
1

2

∑
j∈S(a,b)

∑
k∈S(a,b)

s
(a,b)
jk (χ′) δχjδχk ,

(B6)

we replace f(a,b) by

g(a,b)(χ) = ε(Ta,Tb)

n
(

ρ2(Ta,Tb)

2q(a,b)(χ)

)6

− 2

(
ρ2(Ta,Tb)

2q(a,b)(χ)

)e , (B7)

and we replace the sum B4 by ∑
(a,b)∈E′(χ′)

g(a,b)(χ) . (B8)

B.3 Algorithm

For all j ∈ X, let BSEj ∈ A be the second atom of the bond corresponding to dihedral angle j. For all
(a, b) ∈ E′(χ′), let
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A(a,b) = nε(Ta,Tb)

(
ρ2(Ta,Tb)

2

)6

B(a,b) = −2ε(Ta,Tb)

(
ρ2(Ta,Tb)

2

)e
.

(B9)

For all j ∈ S(a,b), let c(a,b)j be a unit vector along the bond corresponding to dihedral angle j in the direction
of the chain of bonds connecting atoms a and b, and let

τ
(a,b)
j = c

(a,b)
j × (xa − xBSEj )

t
(a,b)
j = c

(a,b)
j × (xb − xBSEj ) .

(B10)

Using this notation, the coefficients of the Taylor expansion of
r2(a,b)

2 about χ′ can be written explicitly as

s
(a,b)
j (χ′) =

(
xb(χ

′)− xa(χ′)
)
· t(a,b)j (χ′)

s
(a,b)
jk (χ′) = τ

(a,b)
j (χ′) · t(a,b)k (χ′)

(B11)

where j precedes k in the chain of bonds connecting atoms a and b.

Each macrostep consists of calculating E′(χ′); calculating
r2(a,b)(χ

′)

2 , A(a,b), B(a,b), and S(a,b) for each

atom pair (a, b) ∈ E′(χ′); calculating s
(a,b)
j (χ′), τ (a,b)j (χ′), and t

(a,b)
j (χ′) for each dihedral angle j ∈ S(a,b)

for each (a, b) ∈ E′(χ′); and minimizing B8 plus a sum of harmonic distance constraints using a sequence
of microsteps to locate the minimum within a region of space for which there is high probability that∑

(a,b)∈E

f(a,b)(χ) ≈
∑

(a,b)∈E′(χ′)

g(a,b)(χ) . (B12)

This region will be referred to as the trust region. The value of the radius of the trust region is assigned
at the start of a minimization and is modified after each macrostep by an amount that depends on the
difference between the predicted energy change and the actual energy change. To determine E′(χ′), we
calculate r2(a,b)(χ

′) for each atom pair (a, b) ∈ E.
Each microstep consists of calculating the function, first derivative, and second derivative of B8 plus a

sum of harmonic distance constraints and stepping to the minimum of the resulting second order Taylor
expansion within a microstep trust region. The function, first derivative, and second derivative of the
sum B8 are calculated using

p =
A(a,b)(
q(a,b)

)6 +
B(a,b)(
q(a,b)

)e ≡ p12 + p2e

p′ =

(
−6
q(a,b)

)
p12 +

(
−e
q(a,b)

)
p2e ≡ p′12 + p′2e

p′′ =

(
−7
q(a,b)

)
p′12 +

(
−(e+ 1)

q(a,b)

)
p′2e

(B13)

and
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g(a,b)(χ
′ + δχ) = p

∂g(a,b)(χ
′ + δχ)

∂χj
= p′

s(a,b)j +
∑

l∈S(a,b)

s
(a,b)
jl δχl


∂2g(a,b)(χ

′ + δχ)

∂χj∂χk
= p′′

s(a,b)j +
∑

l∈S(a,b)

s
(a,b)
jl δχl

s(a,b)k +
∑

l∈S(a,b)

s
(a,b)
kl δχl


+ p′s

(a,b)
jk .

(B14)

Because of the structure of s(a,b)jk given by equation B11, the calculation of q(a,b)(χ
′ + δχ) using equation

B6 requires at most time proportional to #X. The function, first derivative, and second derivative for the
sum of harmonic distance constraints are calculated using no approximations.

B.4 Results and Conclusions

In order to relate the ideas of our procedure to the efficiency of minimization, we consider results
that were obtained for a nine-residue surface loop of trypsin. In the case that is considered, the 12-2e
interaction energy was minimized with respect to the 27 backbone dihedral angles of the loop residues,
and interactions involving side chains were not included in the calculations.

For trypsin, #A ≈ 4,000. Using a cutoff distance of 18Å, #E ≈ 115,000. #E′ ≈ 160, which is approxi-
mately three times the number of backbone atoms in the surface loop. In fact, many of these atom pairs
correspond to 1–4 interactions, which contribute little to the computer time that is required to calculate
the derivatives at each microstep. The time required to calculate the first derivative at each microstep is
proportional to ∑

(a,b)∈E′

#S(a,b) , (B15)

and the time required to calculate the second derivative at each microstep is proportional to

∑
(a,b)∈E′

(
#S(a,b)

)2
2

. (B16)

For the case that is being considered, these quantities have values of ≈ 600 and ≈ 4,500 respectively.
The time required to determineE′ represents about 1/2 of the time required to complete a macrostep.

The time required to calculate
r2(a,b)

2 , A(a,b), B(a,b), S(a,b), s
(a,b)
j , τ (a,b)j , and t(a,b)j for each atom pair (a, b) ∈

E′ and for each dihedral angle j ∈ S(a,b) is negligible. The time required to calculate the function, first
derivative, and second derivative of B8 for a sequence of microsteps represents about 1/6 of the time
required to complete a macrostep. The time required to calculate the function, first derivative, and
second derivative of the harmonic distance constraints for a sequence of microsteps is negligible. The
time required to calculate a sequence of microsteps using Newton’s method represents about 1/3 of the
time required to complete a macrostep.

For small subsets of degrees of freedom such as those used in the global search procedure, the r2

2 ex-
pansion is at least moderately effective. The procedure that we use to calculate the second derivative of

the total energy requires time proportional to (#X)3

6 . When minimizing the total energy, the calculations

requiring time proportional to (#X)3

6 are insignificant in comparison to the calculations requiring time
proportional to #E. When minimizing B4 using the same procedure, calculation of the second derivative
is a computational bottleneck. The time required to calculate the function, first derivative, and second
derivative at each microstep is reduced by a factor of about eight when B4 is replaced by B8. However,
the r2

2 expansion reduces the time required to complete a macrostep by only a factor of two because

much of the required computation is not affected by this approximation. The r2

2 expansion might be
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less effective if the procedure used to calculate the second derivative of the total energy required time

proportional to (#X)2

2 . (36)

B.5 Discussion

The Taylor series expansion of f(a,b) about χ′ can be written as

f(a,b)(χ
′ + δχ) = f(a,b)(χ

′)

+
∑

j∈S(a,b)

∂f(a,b)(χ
′)

∂χj

δχj

+
1

2

∑
j∈S(a,b)

∑
k∈S(a,b)

∂2f(a,b)(χ
′)

∂χj∂χk

δχjδχk

+
1

6

∑
j∈S(a,b)

∑
k∈S(a,b)

∑
l∈S(a,b)

∂3f(a,b)(χ
′)

∂χj∂χk∂χl

δχjδχkδχl

+ · · · .

(B17)

For all (a, b) ∈ E′(χ′), the expansion of f(a,b) to second order in δχ is accurate over a relatively small region
of space. The derivatives of f(a,b) increase in magnitude as the order increases. Therefore, contributions
from terms of third order and higher become important for relatively small values of δχ.

Expansion of f(a,b) to higher order in δχ would not be computationally efficient even if the time re-
quired for microsteps on the resulting surface was negligible. We will refer to the region of space for
which a Taylor expansion to order n accurately approximates the function that is being expanded as the
nth order trust region. The computation required to calculate third and fourth derivatives is on the order

of (#X)2

12 times larger than the computation required to calculate first and second derivatives. Expan-
sion of f(a,b) to fourth order is equivalent to expansion of f(a,b) to second order and expansion of each
component of the second derivative of f(a,b) to second order. The second-order trust region for the sec-
ond derivative of f(a,b) is approximately equal to the second-order trust region for f(a,b). If the second
derivative of f(a,b) is accurate at the radius of the second order trust region for f(a,b), then f(a,b) will
be accurate to approximately twice this radius. In other words, the fourth order trust region for f(a,b)
has approximately twice the radius of the second order trust region for f(a,b). Therefore, the volume of
the fourth order trust region is ≈ 2(#X) times larger than the volume of the second order trust region.
Unfortunately, only a small fraction of this information is useful for local minimization. Two minimization
steps based on expansions to second order result in movement of approximately the same distance using
information about ≈ 2

2(#X) as much volume.

The expansion of r2

2 to second order in δχ is accurate over a region that is larger than the region
for which equation B3 is valid. In other words, at each macrostep, the number of possible microsteps
is limited by the requirement that E′ be updated rather than by the requirement that the r2

2 expansion

coefficients be updated. The derivatives of r
2

2 decrease in magnitude as the order increases. Therefore,
contributions from terms of third order and higher do not become important until δχ becomes relatively
large. In fact, expansion of r2

2 to first order is also accurate over a region larger than the region for

which equation B3 is valid. A second order r2

2 expansion requires approximately three times more com-

putation than a first order r2

2 expansion. These expansions give virtually indistinguishable results for all
macrosteps with the exception of the final macrostep in cases where one or a few atom pairs have inter-
action energies close to 3.5 kcal/mol at the local minimum being approached. In these cases, the extra
accuracy of the second order r2

2 expansion sometimes allows the value of the function to be lowered

slightly farther. We use a second order r2

2 expansion because the resulting increase in accuracy requires
an acceptable amount of additional computation.

Including the 1
r2e term in the minimization allows the same definition of an overlap to be used for both
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hydrogen bonding and non-hydrogen bonding atom pairs. Let ρmin and εmin be the position and depth of
the 12-10 potential for a hydrogen bonding atom pair (a, b). These quantities are related to ρ(Ta,Tb) and
ε(Ta,Tb) by the equations (

ρ(Ta,Tb)

ρmin

)2

=
5

3
(B18)

εmin = −ε(Ta,Tb)
(
1

3

)(
5

3

)5

. (B19)

If equation B2 was replaced by

f(a,b)(χ) = ε(Ta,Tb)n

(
ρ(Ta,Tb)

r(χ)

)12

, (B20)

then the value of f(a,b) for a hydrogen bonding atom pair (a, b) separated by a distance r(a,b) = ρmin
would be −5εmin. Therefore, a different definition of an overlap would be needed for hydrogen bonding
and non-hydrogen bonding atom pairs.

Our procedure for removing overlaps requires about four times less computation than our procedure
for minimizing the total energy of the resulting overlap free structure. Therefore, further reduction of the
required computation is not a high priority.
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